Analyse 2 - Suites et intégrales

Travaux Dirigés 1 - Logique, quantificateurs, ensembles

adresse mail: amandine.schreck@telecom-paristech.fr page web: http://perso.telecom-paristech.fr/~schreck/

Connecteurs logiques et tables de vérité

Dans toute cette feuille, on note P, Q ou R des **propositions mathématiques**, c'est-à-dire des énoncés susceptibles d'être vrais ou faux. Par définition, la proposition

$$(P \text{ et } Q)$$

est vraie si, et seulement si, P et Q sont vraies simultanément. On résume ceci dans le tableau suivant, appelé **table de vérité** (où V et F signifient vrai et faux) :

Р	Q	(P et Q)
V	V	V
V	F	F
F	V	F
F	F	F

De même, la proposition (P ou Q) est vraie si, et seulement si, l'une au moins des deux propositions P et Q est vraie.

Exercice 1

- 1. Donner la table de vérité de la proposition (P ou Q).
- 2. Que fait un étudiant en mathématiques lorsque, sur un menu, il voit écrit "fromage ou dessert"?

Exercice 2

- 1. Ecrire la table de vérité de la proposition "(P et Q) ou R", puis celle de "(P ou R) et (Q ou R)". Conclusion?
- 2. Ecrire la table de vérité pour la proposition (non P), appelée négation de P.
- 3. Quelle est la négation de la phrase "il fait beau et les oiseaux chantent"? De façon générale, la proposition non(P et Q) est équivalente à une autre proposition. Laquelle?
- 4. Le vérifier à l'aide d'une table de vérité.

Exercice 3

L'affirmation suivante, qui suit des règles de calcul usuelles dans \mathbb{R} , est vraie : pour tout nombre réel x, si x=2, alors $x^2=4$.

On appelle P l'affirmation "x = 2", et Q l'affirmation " $x^2 = 4$ ".

- 1. Si P est vraie, est-ce que Q est toujours vraie?
- 2. Si P est fausse, est-ce que Q est toujours fausse?
- 3. Proposer une table de vérité pour la proposition $P \Rightarrow Q$, qui se lit P implique Q, et qui exprime l'affirmation "si P est vraie, alors Q est vraie".
- 4. On appelle P la proposition "il fait beau", et Q la proposition "j'irai à la plage". L'affirmation "si il fait beau, alors j'irai à la plage" exprime-t-elle une implication au sens mathématique?

Exercice 4

La proposition $(\text{non}Q) \Rightarrow (\text{non}P)$ s'appelle **contraposée** de la proposition $P \Rightarrow Q$.

- 1. Etablir la table de vérité de $(nonQ) \Rightarrow (nonP)$. Conclusion?
- 2. Décomposer sous forme logique la phrase "Si la programmation me plaît et si le tarif est raisonnable, je vais m'abonner à l'opéra Bastille." On introduira pour ceci trois propositions P, Q et R.
- 3. Ecrire la contraposée de la proposition obtenue, et traduire en français cette contraposée.

Exercice 5

- 1. Écrire la table de vérité pour la proposition $(P \Leftrightarrow Q)$, qui exprime l'affirmation "P est vraie si et seulement si Q est vraie".
- 2. Quelle est la négation de cette affirmation?

Quantificateurs et éléments de logique

Un ingénieur, un physicien et un logicien sont dans un train en Écosse. Ils voient un mouton noir sur le bord de la route. « Les moutons écossais semblent être noirs. » dit l'ingénieur. « Non, il est plus correct de dire qu'au moins un mouton écossais est noir. » corrige le physicien. « Non, il est plus correct de dire qu'il a existé à un instant donné en Écosse au moins un mouton dont l'un des côtés au moins est noir! » dit le logicien...

Exercice 6

On considère la proposition suivante

$$P(x, y) : x$$
 est la fille de y .

Traduire en termes mathématiques les phrases suivantes :

- 1. Toute femme a une mère.
- 2. Toute femme a au moins deux filles.
- 3. Il existe une femme qui est la mère de toutes les autres femmes.

Exercice 7

Les propositions suivantes sont-elles vraies? Sinon, énoncer leur négation.

1.
$$\exists x \in \mathbb{N}, x^2 > 5$$

3.
$$\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, y > x^2$$

1.
$$\exists x \in \mathbb{N}, x^2 > 5$$
. 3. $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, y > x^2$. 5. $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, y > x^2$. 2. $\forall x \in \mathbb{N}, x^2 > 5$. 4. $\exists y \in \mathbb{N}, \forall x \in \mathbb{N}, y > x^2$. 6. $\forall y \in \mathbb{N}, \exists x \in \mathbb{N}, y > x^2$.

$$2. \ \forall x \in \mathbb{N}, x^2 > 5$$

4.
$$\exists y \in \mathbb{N}, \forall x \in \mathbb{N}, y > x^2$$

6.
$$\forall y \in \mathbb{N}, \exists x \in \mathbb{N}, y > x^2$$

Exercice 8

1. Soit A une assertion. Écrire en français les propositions

$$P1: (\exists x, \forall y, A(x, y)) \text{ et } P2: (\forall y, \exists x, A(x, y)).$$

2. L'une de ces propositions implique-t-elle la seconde? Ces deux propositions sont-elles équivalentes? Qu'en concluez-vous sur le changement de l'ordre des quantificateurs dans une proposition?

Exercice 9

Considérons l'énoncé suivant : "Il faut être majeur pour voter".

- 1. L'énoncer avec le signe \Rightarrow , puis écrire sa contraposée.
- 2. Les raisonnements suivants sont-ils corrects?
 - (a) Paul a voté, donc Paul est majeur.
 - (b) Pierre n'a pas voté, donc Pierre n'est pas majeur.
 - (c) Carole est majeure, donc Carole a voté.