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Goal : sample a target distribution Π (known up to a
multiplicative constant)
Problem : for multimodal distributions, some algorithms
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Why interact ?
The adaptive equi-energy sampler

Base : Metropolis Hastings algorithm (with dominating measure
dµ)

Goal : sample a distribution Π = πdµ known up to a
multiplicative constant.
Tool : a transition kernel q such that for any x , it is possible
to sample from q(x , ·)dµ.
An iteration starting from X t :

Sample Y t+1 according to q(X t , ·)dµ.
Compute the acceptance probability

α(X t ,Y t+1) = min
(
1,
π(Y t+1)q(Y t+1,X t)

π(X t)q(X t ,Y t+1)

)
.

Set X t+1 = Y t+1 with probability α(X t ,Y t+1) and
X t+1 = X t with probability 1− α(X t ,Y t+1).
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It seems easier to sample a tempered version θ? with density
π1/T , T > 1 of the target distribution.
Idea : Sample a tempered version of the target distribution as
an auxiliary process and allow the process of interest to
“jump” on one of the sampled auxiliary states after and
acceptance/rejection step.
Problem : The acceptance probability could be really low.
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Equi-Energy Sampler [Kou, Zhou and Wong, 2006] :
Sample X0 under any initial distribution µ.
We know n values Y1, . . . ,Yn of an auxiliary process. Knowing
the current state Xn :

with probability 1− ε, sample Xn+1 with a symmetric random
walk Metropolis-Hastings algorithm
with probability ε, choose an auxiliay value Yi such that π(Yi )
is “close” to π(Xn), and set Xn+1 = Yi or Xn+1 = Xn after an
acceptance/rejection step
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What “close” is

Fix a number of rings S . Consider a sequence of real number
ξ0 = 0 < ξ1 < · · · < ξS = +∞.
Two energies π(x) and π(y) are said to be close if there exists l ,
1 ≤ l ≤ S such that ξl−1 ≤ π(x), π(y) < ξl .
On the choice of the ξi :

Original equi-energy sampler : fixed by user
Problem : crucial choice
Our adaptive equi-energy sampler : quantile estimators

empirical quantiles
stochastic approximation estimators
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Why interact ?
The adaptive equi-energy sampler

Method 1 : Empirical quantiles associated to a distribution θ :
Cumulative distribution function : Fθ(x) =

∫
1{π(y)≤x}θ(dy).

Quantile function : F−1
θ (p) = inf{x ≥ 0,Fθ(x) ≥ p}.

ξθ,l = F−1
θ (l/S).

For the adaptive EES : θn = n−1∑n
k=1 δYk .
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Method 2 : Stochastic approximation procedure with a stepsize
sequence (γn)n∈N :

ξn,l = ξn−1,l + γn

(
l/S − 1{π(Yn)≤ξn−1,l}

)
.
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On the convergence of AEE

The adaptation can destroy the convergence results. But for the
adaptation made with empirical quantiles,

under classical conditions on the target density, the local
moves and the auxiliary process,
under conditions on the energy levels,
introducing the solution of the Poisson equation to obtain a
martingale term,

we show the ergodicity and a strong LLN for AEE and EE.
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The adaptive EE sampler generates a bivariate process (Xn, θn)
(Fn)-adapted for the filtration (Fn) = σ(Y1, . . . ,Yn,X1, . . . ,Xn),
and such that :

E [f (Xn+1)|Fn] = Pθn f (Xn) .
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Conditions on π :

(a) π is the density of a probability distribution on the measurable
Polish space (X,X ) and supX π <∞.

(b) π is continuous on X.
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A few notations :
V -norm of a function f :|f [V = supx∈X

|f (x)|
V (x)

V -norm of a signed measure µ : ‖µ‖V = supf ,|f |V≤1 |µ(f )|
V -variation between Pθ and Pθ′ by
DV (θ, θ′) = supx∈X

(
‖Pθ(x ,.)−Pθ′ (x ,.)‖V

V (x)

)
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Conditions on the proposal distribution P :

(a) P is a phi-irreducible transition kernel which is Feller on
(X,X ) and such that ΠP = Π.

(b) Drift inequality : there exist λ ∈ (0, 1), b < +∞ and
τ ∈ (0, 1− β) such that PW ≤ λW + b with

W (x) =

(
π(x)

supX π

)−τ
. (1)

(c) Small sets : for all p ∈ (0, supX π), the sets {π ≥ p} are
1-small for P .
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Θm =

{
θ ∈ Θ :

1
m
≤ inf

x

∫
gθ(x , y)θ(dy)

}
,

where gθ is the selection function.

Extension of previous assumptions :
(a) For all θ, Pθ is phi-irreducible and for all p ∈ (0, supX π), the

sets {π ≥ p} are 1-small for Pθ .
(b) Drift inequality : there exist λ̃ ∈ (0, 1), b̃ < +∞ such that for

all m ≥ 1 and θ ∈ Θm,

PθW ≤ λ̃W + b̃ m θ(W ) .
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Corollary :
For all n ∈ N, the kernel Pθn admits a finite invariant
distribution Πθn

Simultaneous geometric ergodicity : for all n ∈ N, there
exist some random variables Cθn and ρθn such that for all
x ∈ X :

‖Pk
θn(x , .)− Πθn‖W ≤ Cθnρ

k
θnW (x)
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Conditions on the auxiliary process :

(a) supn E [W (Yn)] <∞.
(b) Law of large numbers : θ?(W ) < +∞, and for all

continuous function f such that |f | ≤ CW , θn(f )→ θ?(f ) a.s.

where θ? is the distribution with density proportionnal to π1/T .
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Control on the measure of the rings :

If the energy levels converge, there exists m? such that

P

⋃
q≥1

⋂
n≥q

{θn ∈ Θm?}

 = 1 .

→ similar constants for all Pθn in geometric drift and geometric
ergodicity (containment condition).
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Control on the measure of the fluctuations between kernels :

There exists a constant C such that, on the set
⋂

j≥q{θn ∈ Θm?},

DV (θk , θk−1)

≤ C
(
sup

l

∣∣ξθk ,l − ξθk−1,l
∣∣+ ‖θk − θk−1‖TV

)
(‖θk‖V + ‖θk−1‖V )

+ C ‖θk − θk−1‖V .

→ with some conditions on supl
∣∣ξθk ,l − ξθk−1,l

∣∣ : diminishing
adaptation.

Amandine Schreck Adaptive Equi-Energy Sampler



Introduction
The algorithm

On the convergence of AEE
Illustrations
Conclusion

Control of each kernel
Make the control uniform
Convergence results
On the choice of the energy levels

Conditions required on the energy boundaries :

(a) Convergence : for any l ∈ {1, . . . , S − 1},
limn

∣∣ξθn,l − ξθ?,l ∣∣ = 0, w.p.1
(b) Stability : there exists Γ > 0 such that for any

k ∈ {1, . . . ,K − 1}, for any l ∈ {1, . . . , S − 1}, and any γ < Γ,

lim sup
n

nγ
∣∣ξθn+1,l − ξθn,l

∣∣ <∞ ,P− a.s.
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Convergence results
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Convergence of the invariant distributions :∣∣Πθn(x)(f )− Πθ?(w)(f )
∣∣ ≤ ∣∣∣Πθn(w)(f )− Pk

θn(w)f (x)
∣∣∣

+
∣∣∣Pk
θn(w)f (x)− Pk

θ?(w)f (x)
∣∣∣

+
∣∣∣Pk
θ?(w)f (x)− Πθ?(f )

∣∣∣
Control :

Terms 1 and 3 : controled with
‖Pk

θ (x , .)− Πθ‖V ≤ Cθρk
θV (x) P-ps

Term 2 : weak convergence of the kernels Pθn toward Pθ? , and
equi-continuity of these kernels
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Ergodicity :

|E[f (Xn)]− Π(f )| ≤
∣∣∣E [f (Xn)− PN

θn−N
f (Xn−N)

]∣∣∣
+
∣∣∣E [PN

θn−N
f (Xn−N)− Πθn−N (f )

]∣∣∣
+
∣∣E [Πθn−N (f )− Π(f )

]∣∣
Control :

Term 1 : sum of some DV (θn+j , θn+j−1)

Term 2 : controled with ‖Pk
θ (x , .)− Πθ‖V ≤ Cθρk

θV (x) P-ps
Terme 3 : convergence of the invariant distributions
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Strong law of large numbers :

1
n

n∑
k=1

[f (Xk)− Π(f )]

=
1
n

n∑
k=1

[
f (Xk)− Πθk−1(f )

]
+

1
n

n∑
k=1

[
Πθk−1(f )− Π(f )

]

Control of term 2 : convergence of the invariant distributions +
Cesaro
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For 1
n
∑n

k=1
[
f (Xk)− Πθk−1(f )

]
:

The idea is to introduce the solution f̂θ of the Poisson equation

f̂θ − Pθ f̂θ = f − Πθ(f )

to isolate a martingale term.
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1
n

n∑
k=1

[
f (Xk)− Πθk−1(f )

]
= T1,n + T2,n + T3,n

T1,n = remainder term

T2,n =
1
n

n−1∑
k=1

{f̂θk−1(Xk)− Pθk−1 f̂θk−1(Xk−1)}

T3,n =
1
n

n−1∑
k=1

{Pθk f̂θk (Xk)− Pθk−1 f̂θk−1(Xk)}

Amandine Schreck Adaptive Equi-Energy Sampler
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Term T2,n :

T2,n =
1
n

n−1∑
k=1

{f̂θk−1(Xk)− Pθk−1 f̂θk−1(Xk−1)}

T2,n is martingale. We control it by showing that there exists
α > 1 such that∑∞

k=1 k−αE
[∣∣∣{f̂θk−1(Xk)− Pθk−1 f̂θk−1(Xk−1)

∣∣∣α∣∣∣Fk−1

]
<∞ as

Amandine Schreck Adaptive Equi-Energy Sampler
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Term T3,n :

T3,n =
1
n

n−1∑
k=1

{Pθk f̂θk (Xk)− Pθk−1 f̂θk−1(Xk)}

is caused by the kernel fluctuation. Controled with results of
diminishing adaptation.
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On the choice of the energy levels
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Empirical quantiles :

We show with a Hoeffding inequality on non stationary Markov
chains that the conditions are satisfied.
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Stochastic approximation :

∣∣ξn+1,l − ξn,l
∣∣ ≤ γn+1 → stability assumption satisfied for

well-chosen stepsize sequence.
Problem for convergence : stochastic approximation scheme

ξn+1 = ξn + γn+1 H(ξn,Yn+1) ,

with discontinuous field

H(ξ, y) = q − 1{π(y)≤ξ} .
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If the auxiliary process is a Markov chain, we show that

ξn −→n→∞
ξ? where Eθ? [H(ξ?,Y )] = 0 .

Regularity condition used on H : There exists α ∈ (0, 1], and for
all compact set K ⊆ R, there exists C > 0 such that for all δ > 0,

sup
ξ∈K

∫
sup

{ξ′,|ξ′−ξ|≤δ}

∣∣H(ξ′, x)− H(ξ, x)
∣∣π1/T (x)dx ≤ Cδα .

→ Need to be extended to chains with external randomness.
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Figure : [left] Metropolis-Hastings [center] equi-energy sampler [right]
adaptive equi-energy sampler for a mixture of Gaussian distributions
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Notations :
L : length of the DNA sequence
S : DNA sequence. S = (s1, s2, . . . , sL) with si ∈ {1, 2, 3, 4} (1
corresponding to A, 2 to C, 3 to G and 4 to T)
w : length of a motif
A : array giving the position of the motifs. A = (a1, . . . , aL),
where ai is equal to j ∈ {0, . . . ,w} if the ith element of the
sequence is the jth element of a motif
p0 : probability for a sub-sequence of length w to be a motif

Amandine Schreck Adaptive Equi-Energy Sampler
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Distribution :
Background sequence : Markov chain associated with the
transition matrix denoted by θ0
Motif : multinomial distribution of parameter θ = (θ1, . . . , θw )

This gives the distribution of A knowing S , θ, θ0 and p0. We then
put a prior on θ and p0, and study the distribution of A knowing S
and θ0.

P(A|S, θ0) ∝
Γ(N1 + a)Γ(N0 + b)

Γ(N1 + N0 + a + b)

w∏
i=1

∏4
j=1 Γ(ci,j + βi,j )

Γ(
∑4

j=1 ci,j + βi,j )

L∏
k=2

(δak−1+1(ak ))
1ak−1∈{1,...,w−1}

L∏
k=2

θ
1−Āk
0 (sk−1, sk )ξa1 (s1)

Amandine Schreck Adaptive Equi-Energy Sampler



Introduction
The algorithm

On the convergence of AEE
Illustrations
Conclusion

Toy example
Motif sampling
Shape of proteins

MH

200 400 600 800 1000 1200 1400 1600 1800 2000

0.5

1

1.5

2

2.5

EES

200 400 600 800 1000 1200 1400 1600 1800 2000

0.5

1

1.5

2

2.5

AEES

200 400 600 800 1000 1200 1400 1600 1800 2000

0.5

1

1.5

2

2.5

Figure : Average location of the motifs - comparison of 3 algorithms
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A protein of size M is described by
A monomer sequence S = [S1, S2, . . . , SM ] ∈ {0, 1}M , with
Si = 0 (resp. Si = 1) if the i-th monomer is hydrophobic
(resp. hydrophilic).
A sequence of angles X = [X1,X2, . . . ,XM−2].
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Energy of a protein :

U(X ) =
M−2∑
i=1

1
4

(1− cos(Xi )) + 4
M−2∑
i=1

M∑
j=i+2

[
d−12
i ,j − C (Si , Sj)d−6

i ,j

]
,

where C (0, 0) = 1, C (0, 1) = C (1, 0) = −1/2 and
C (1, 1) = 1/2.
Goal : sample the distribution with density
π(x) ∝ exp(−U(x)/τ ), with τ > 0 small (multimodalty).
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Figure : (left) actual shape, (center) global energy minimum, (right) local
energy minimum
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Figure : log of energy on a segment
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AEES WL
Mean minimum energy -3.1970 -3.1632

Associated standard deviation 0.032 0.048
Global minimum energy -3.2925 -3.2764

Amandine Schreck Adaptive Equi-Energy Sampler



Introduction
The algorithm

On the convergence of AEE
Illustrations
Conclusion

Conclusion

Amandine Schreck Adaptive Equi-Energy Sampler



Introduction
The algorithm

On the convergence of AEE
Illustrations
Conclusion

In practice :
Far more efficient than Metropolis-Hastings (mix better)
Does not require the user to choose the energy rings

But :
Higher computational cost than the non-adaptive algorithm
Still a lot of parameters to choose
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To go further :
Study the effects of the design parameters
Combine with adaptive proposal
Central limit theorem ?
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Thank you !

URL of the paper : http ://arxiv.org/abs/1207.0662
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Selection function : gθ(x , y) =
∑S

l=1 hθ,l (x)hθ,l (y),

with : hθ,l (x) =
(
1− d(π(x),Aθ,l )

r

)
+
.

Kernel for the EE move : Kθ(x ,A) =∫
A αθ(x , y) gθ(x ,y)θ(dy)∫

gθ(x ,z)θ(dz)
+ 1A(x)

∫
{1− αθ(x , y)} gθ(x ,y)θ(dy)∫

gθ(x ,z)θ(dz)
,

with : αθ(x , y) = 1 ∧
(
π(y)
π(x)

π1−β(x)
∫

gθ(x ,z)θ(dz)

π1−β(y)
∫

gθ(y ,z)θ(dz)

)
.

Kernel for the AEE sampler :
Pθ(x , .) = (1− ε)P(x , .) + εKθ(x , .).
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