An adaptive version of the equi-energy sampler

Amandine Schreck, Gersende Fort and Eric Moulines

Télécom ParisTech

April 10th 2014

Introduction

The algorithm On the convergence of AEE Illustrations Conclusion Motivation Illustration Outline

- Goal : sample a target distribution Π (known up to a multiplicative constant)
- Problem : for multimodal distributions, some algorithms remain trapped in one of the modes

• • • • • • • • • • • •

Introduction

The algorithm On the convergence of AEE Illustrations Conclusion Motivation Illustration Outline

Figure : Random walk Metropolis-Hastings for a mixture of Gaussian distributions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Introduction

The algorithm On the convergence of AEE Illustrations Conclusion Motivation Illustration Outline

- Why interact?
- The adaptive equi-energy sampler

On the convergence of AEE

- Control of each kernel
- Make the control uniform
- Convergence results
- On the choice of the energy levels

3 Illustrations

- Toy example
- Motif sampling
- Shape of proteins

Why interact? The adaptive equi-energy sampler

The algorithm

Amandine Schreck Adaptive Equi-Energy Sampler

< ロ > < 同 > < 回 > <

Base : Metropolis Hastings algorithm (with dominating measure $\mathrm{d}\mu)$

- Goal : sample a distribution $\Pi = \pi d\mu$ known up to a multiplicative constant.
- Tool : a transition kernel q such that for any x, it is possible to sample from q(x, ·)dµ.
- An iteration starting from X^t :
 - Sample Y^{t+1} according to $q(X^t, \cdot)d\mu$.
 - Compute the acceptance probability

$$\alpha(X^t, Y^{t+1}) = \min\left(1, \frac{\pi(Y^{t+1})q(Y^{t+1}, X^t)}{\pi(X^t)q(X^t, Y^{t+1})}\right)$$

• Set $X^{t+1} = Y^{t+1}$ with probability $\alpha(X^t, Y^{t+1})$ and $X^{t+1} = X^t$ with probability $1 - \alpha(X^t, Y^{t+1})$.

Why interact? The adaptive equi-energy sampler

Figure : Actual density and a tempered version (T = 50)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Why interact? The adaptive equi-energy sampler

- It seems easier to sample a tempered version θ_{\star} with density $\pi^{1/T}$, T>1 of the target distribution.
- Idea : Sample a tempered version of the target distribution as an **auxiliary** process and allow the process of **interest** to "jump" on one of the sampled **auxiliary** states after and acceptance/rejection step.
- **Problem** : The acceptance probability could be really low.

Equi-Energy Sampler [Kou, Zhou and Wong, 2006] :

- Sample X_0 under any initial distribution μ .
- We know *n* values Y_1, \ldots, Y_n of an auxiliary process. Knowing the current state X_n :
 - with probability 1ϵ , sample X_{n+1} with a symmetric random walk Metropolis-Hastings algorithm
 - with probability ε, choose an auxiliary value Y_i such that π(Y_i) is "close" to π(X_n), and set X_{n+1} = Y_i or X_{n+1} = X_n after an acceptance/rejection step

• □ ▶ • • □ ▶ • • □ ▶ •

Why interact? The adaptive equi-energy sampler

What "close" is

Fix a number of rings *S*. Consider a sequence of real number $\xi_0 = 0 < \xi_1 < \cdots < \xi_S = +\infty$.

Two energies $\pi(x)$ and $\pi(y)$ are said to be close if there exists *I*, $1 \le l \le S$ such that $\xi_{l-1} \le \pi(x), \pi(y) < \xi_l$.

On the choice of the ξ_i :

- Original equi-energy sampler : fixed by user
- Problem : crucial choice
- Our adaptive equi-energy sampler : quantile estimators
 - empirical quantiles
 - stochastic approximation estimators

Why interact? The adaptive equi-energy sampler

э

Why interact? The adaptive equi-energy sampler

Method 1 : Empirical quantiles associated to a distribution θ :

- Cumulative distribution function : $F_{\theta}(x) = \int \mathbf{1}_{\{\pi(y) \le x\}} \theta(dy)$.
- Quantile function : $F_{\theta}^{-1}(p) = \inf\{x \ge 0, F_{\theta}(x) \ge p\}.$
- $\xi_{\theta,I} = F_{\theta}^{-1} (I/S).$

For the adaptive EES : $\theta_n = n^{-1} \sum_{k=1}^n \delta_{Y_k}$.

Why interact? The adaptive equi-energy sampler

Method 2: Stochastic approximation procedure with a stepsize sequence $(\gamma_n)_{n \in \mathbb{N}}$:

$$\xi_{n,l} = \xi_{n-1,l} + \gamma_n \left(l/S - \mathbf{1}_{\{\pi(Y_n) \le \xi_{n-1,l}\}} \right).$$

(日) (同) (三)

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Theoretical results

Amandine Schreck Adaptive Equi-Energy Sampler

< D > < P > < P > < P >

< ∃ >

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

On the convergence of AEE

The adaptation can destroy the convergence results. But for the adaptation made with empirical quantiles,

- under classical conditions on the target density, the local moves and the auxiliary process,
- under conditions on the energy levels,
- introducing the solution of the Poisson equation to obtain a martingale term,

we show the ergodicity and a strong LLN for AEE and EE.

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

The adaptive EE sampler generates a **bivariate process** (X_n, θ_n) (\mathcal{F}_n) -adapted for the filtration $(\mathcal{F}_n) = \sigma(Y_1, \ldots, Y_n, X_1, \ldots, X_n)$, and such that :

 $\mathbb{E}\left[f(X_{n+1})|\mathcal{F}_n\right] = P_{\theta_n}f(X_n) \ .$

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Conditions on π :

- (a) π is the density of a probability distribution on the measurable Polish space (**X**, \mathcal{X}) and $\sup_{\mathbf{X}} \pi < \infty$.
- (b) π is continuous on X.

< ロ > < 同 > < 回 > <

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

A few notations :

- V-norm of a function $f : |f|_V = \sup_{x \in \mathbf{X}} \frac{|f(x)|}{V(x)}$
- V-norm of a signed measure $\mu : \|\mu\|_V = \sup_{f, |f|_V \le 1} |\mu(f)|$
- V-variation between P_{θ} and $P_{\theta'}$ by $D_{V}(\theta, \theta') = \sup_{x \in \mathbf{X}} \left(\frac{\|P_{\theta}(x, .) - P_{\theta'}(x, .)\|_{V}}{V(x)} \right)$

(日) (同) (三) (三)

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Control of each kernel

Amandine Schreck Adaptive Equi-Energy Sampler

< ロ > < 同 > < 回 > <

э

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Conditions on the proposal distribution P:

- (a) *P* is a **phi-irreducible** transition kernel which is **Feller** on $(\mathbf{X}, \mathcal{X})$ and such that $\mathbf{\Pi} P = \mathbf{\Pi}$.
- (b) Drift inequality : there exist $\lambda \in (0, 1)$, $b < +\infty$ and $\tau \in (0, 1 \beta)$ such that $PW \le \lambda W + b$ with

$$W(x) = \left(\frac{\pi(x)}{\sup_{\mathbf{X}} \pi}\right)^{-\tau} \quad . \tag{1}$$

• □ ▶ • • □ ▶ • • □ ▶

(c) Small sets : for all $p \in (0, \sup_{\mathbf{X}} \pi)$, the sets $\{\pi \ge p\}$ are 1-small for P.

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

$$\Theta_m = \left\{ \theta \in \Theta : rac{1}{m} \leq \inf_x \int g_{\theta}(x,y) \theta(\mathrm{d}y)
ight\} \; ,$$

where g_{θ} is the selection function.

Extension of previous assumptions :

- (a) For all θ , P_{θ} is **phi-irreducible** and for all $p \in (0, \sup_{\mathbf{X}} \pi)$, the sets $\{\pi \ge p\}$ are 1-small for P_{θ} .
- (b) Drift inequality : there exist $\tilde{\lambda} \in (0, 1)$, $\tilde{b} < +\infty$ such that for all $m \ge 1$ and $\theta \in \Theta_m$,

$$P_{\theta}W \leq \tilde{\lambda}W + \tilde{b} \ m \ \theta(W)$$
.

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Corollary :

- For all n ∈ N, the kernel P_{θn} admits a finite invariant distribution Π_{θn}
- Simultaneous geometric ergodicity : for all $n \in \mathbb{N}$, there exist some random variables C_{θ_n} and ρ_{θ_n} such that for all $x \in \mathbf{X}$:

$$\|P_{ heta_n}^k(x,.) - \Pi_{ heta_n}\|_W \leq C_{ heta_n}
ho_{ heta_n}^k W(x)$$

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Make the control uniform

Amandine Schreck Adaptive Equi-Energy Sampler

< ロ > < 同 > < 回 > <

э

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Conditions on the auxiliary process :

(a) $\sup_{n} \mathbb{E} \left[W(Y_{n}) \right] < \infty$.

(b) Law of large numbers : $\theta_{\star}(W) < +\infty$, and for all continuous function f such that $|f| \leq CW$, $\theta_n(f) \rightarrow \theta_{\star}(f)$ a.s.

where θ_{\star} is the distribution with density proportionnal to $\pi^{1/T}$.

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Control on the measure of the rings :

If the energy levels converge, there exists m_{\star} such that

$$\mathbb{P}\left(\bigcup_{q\geq 1}\bigcap_{n\geq q}\{\theta_n\in\Theta_{m_\star}\}\right)=1$$

 \rightarrow similar constants for all P_{θ_n} in geometric drift and geometric ergodicity (containment condition).

• • • • • • • • • • •

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Control on the measure of the fluctuations between kernels :

There exists a constant C such that, on the set $\bigcap_{i\geq q} \{\theta_n \in \Theta_{m_\star}\}$,

$$\begin{aligned} &D_V(\theta_k, \theta_{k-1}) \\ &\leq C \left(\sup_{l} \left| \xi_{\theta_k, l} - \xi_{\theta_{k-1}, l} \right| + \|\theta_k - \theta_{k-1}\|_{\mathrm{TV}} \right) \left(\|\theta_k\|_V + \|\theta_{k-1}\|_V \right) \\ &+ C \|\theta_k - \theta_{k-1}\|_V . \end{aligned}$$

 \rightarrow with some conditions on $\sup_{l} |\xi_{\theta_{k},l} - \xi_{\theta_{k-1},l}|$: diminishing adaptation.

(日) (同) (三) (三)

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Conditions required on the energy boundaries :

(a) Convergence : for any *l* ∈ {1,..., *S* − 1}, lim_n |ξ<sub>θ_n,l − ξ_{θ_{*},l}| = 0, w.p.1
(b) Stability : there exists Γ > 0 such that for any k ∈ {1,..., K − 1}, for any *l* ∈ {1,..., *S* − 1}, and any γ < Γ,
</sub>

$$\limsup_{n} n^{\gamma} |\xi_{\theta_{n+1},I} - \xi_{\theta_n,I}| < \infty \quad , \mathbb{P} - \text{a.s.}$$

イロト イポト イヨト イヨト

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Convergence results

Amandine Schreck Adaptive Equi-Energy Sampler

(日) (同) (三)

3 k 3

Control of each kernel Make the control uniform **Convergence results** On the choice of the energy levels

Convergence of the invariant distributions :

$$egin{aligned} \left|\Pi_{ heta_n(x)}(f) - \Pi_{ heta_\star(w)}(f)
ight| &\leq \left|\Pi_{ heta_n(w)}(f) - P^k_{ heta_n(w)}f(x)
ight| \ &+ \left|P^k_{ heta_\star(w)}f(x) - P^k_{ heta_\star(w)}f(x)
ight| \ &+ \left|P^k_{ heta_\star(w)}f(x) - \Pi_{ heta_\star}(f)
ight| \end{aligned}$$

Control :

- Terms 1 and 3 : controled with $\|P_{\theta}^{k}(x,.) \Pi_{\theta}\|_{V} \leq C_{\theta}\rho_{\theta}^{k}V(x)$ P-ps
- Term 2 : weak convergence of the kernels P_{θ_n} toward P_{θ_\star} , and equi-continuity of these kernels

Control of each kernel Make the control uniform **Convergence results** On the choice of the energy levels

Ergodicity :

$$\begin{split} |\mathbb{E}[f(X_n)] - \Pi(f)| &\leq \left| \mathbb{E}\left[f(X_n) - P^N_{\theta_{n-N}} f(X_{n-N}) \right] \right| \\ &+ \left| \mathbb{E}\left[P^N_{\theta_{n-N}} f(X_{n-N}) - \Pi_{\theta_{n-N}}(f) \right] \right| \\ &+ \left| \mathbb{E}\left[\Pi_{\theta_{n-N}}(f) - \Pi(f) \right] \right| \end{split}$$

Control :

- Term 1 : sum of some $D_V(\theta_{n+j}, \theta_{n+j-1})$
- Term 2 : controled with $\|P_{\theta}^{k}(x,.) \Pi_{\theta}\|_{V} \leq C_{\theta} \rho_{\theta}^{k} V(x) \mathbb{P}$ -ps
- Terme 3 : convergence of the invariant distributions

• □ ▶ • • □ ▶ • • □ ▶

Control of each kernel Make the control uniform **Convergence results** On the choice of the energy levels

Strong law of large numbers :

$$\frac{1}{n} \sum_{k=1}^{n} [f(X_k) - \Pi(f)]$$

= $\frac{1}{n} \sum_{k=1}^{n} [f(X_k) - \Pi_{\theta_{k-1}}(f)] + \frac{1}{n} \sum_{k=1}^{n} [\Pi_{\theta_{k-1}}(f) - \Pi(f)]$

Control of term ${\bf 2}$: convergence of the invariant distributions + Cesaro

< ロ > < 同 > < 回 > <

Control of each kernel Make the control uniform **Convergence results** On the choice of the energy levels

For
$$\frac{1}{n} \sum_{k=1}^{n} [f(X_k) - \prod_{\theta_{k-1}} (f)]$$
:

The idea is to introduce the solution \hat{f}_{θ} of the Poisson equation

$$\hat{f}_{ heta} - P_{ heta}\hat{f}_{ heta} = f - \Pi_{ heta}(f)$$

to isolate a martingale term.

A B > A B > A

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

$$\frac{1}{n}\sum_{k=1}^{n}\left[f(X_{k})-\Pi_{\theta_{k-1}}(f)\right]=T_{1,n}+T_{2,n}+T_{3,n}$$

$$\begin{split} T_{1,n} &= \text{remainder term} \\ T_{2,n} &= \frac{1}{n} \sum_{k=1}^{n-1} \{ \hat{f}_{\theta_{k-1}}(X_k) - P_{\theta_{k-1}} \hat{f}_{\theta_{k-1}}(X_{k-1}) \} \\ T_{3,n} &= \frac{1}{n} \sum_{k=1}^{n-1} \{ P_{\theta_k} \hat{f}_{\theta_k}(X_k) - P_{\theta_{k-1}} \hat{f}_{\theta_{k-1}}(X_k) \} \end{split}$$

・ロト ・同ト ・ヨト ・

Control of each kernel Make the control uniform **Convergence results** On the choice of the energy levels

Term $T_{2,n}$:

$$T_{2,n} = \frac{1}{n} \sum_{k=1}^{n-1} \{ \hat{f}_{\theta_{k-1}}(X_k) - P_{\theta_{k-1}} \hat{f}_{\theta_{k-1}}(X_{k-1}) \}$$

 $T_{2,n} \text{ is martingale. We control it by showing that there exists}$ $<math display="block">\alpha > 1 \text{ such that} \\ \sum_{k=1}^{\infty} k^{-\alpha} \mathbb{E}\left[\left|\{\hat{f}_{\theta_{k-1}}(X_k) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1})\right|^{\alpha} \middle| \mathcal{F}_{k-1}\right] < \infty \text{ as}$

Control of each kernel Make the control uniform **Convergence results** On the choice of the energy levels

Term $T_{3,n}$:

$$T_{3,n} = \frac{1}{n} \sum_{k=1}^{n-1} \{ P_{\theta_k} \hat{f}_{\theta_k}(X_k) - P_{\theta_{k-1}} \hat{f}_{\theta_{k-1}}(X_k) \}$$

is caused by the kernel fluctuation. Controled with results of diminishing adaptation.

A 3 b

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

On the choice of the energy levels

3.5

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Empirical quantiles :

We show with a **Hoeffding inequality** on non stationary Markov chains that the conditions are satisfied.

< ロ > < 同 > < 回 > <

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

Stochastic approximation :

- $|\xi_{n+1,l} \xi_{n,l}| \le \gamma_{n+1} \rightarrow \text{stability assumption satisfied for well-chosen stepsize sequence.}$
- Problem for convergence : stochastic approximation scheme

$$\xi_{n+1} = \xi_n + \gamma_{n+1} H(\xi_n, Y_{n+1}),$$

with discontinuous field

$$H(\xi, y) = q - \mathbf{1}_{\{\pi(y) \leq \xi\}} .$$

Control of each kernel Make the control uniform Convergence results On the choice of the energy levels

If the auxiliary process is a Markov chain, we show that

$$\xi_n \xrightarrow[n \to \infty]{} \xi_\star \quad ext{where} \quad \mathbb{E}_{\theta_\star}[H(\xi_\star, Y)] = 0 \; .$$

Regularity condition used on H: There exists $\alpha \in (0, 1]$, and for all compact set $\mathcal{K} \subseteq \mathbb{R}$, there exists C > 0 such that for all $\delta > 0$,

$$\sup_{\xi\in\mathcal{K}}\int \sup_{\{\xi',|\xi'-\xi|\leq\delta\}} \left|H(\xi',x)-H(\xi,x)\right|\pi^{1/T}(x)\mathrm{d} x\leq C\delta^{\alpha}$$

 \rightarrow Need to be extended to chains with external randomness.

Toy example Motif sampling Shape of proteins

Illustrations

Amandine Schreck Adaptive Equi-Energy Sampler

Image: Image:

Toy example Motif sampling Shape of proteins

Toy example

Amandine Schreck Adaptive Equi-Energy Sampler

(日)

문 문 문

Toy example Motif sampling Shape of proteins

Figure : [left] Metropolis-Hastings [center] equi-energy sampler [right] adaptive equi-energy sampler for a mixture of Gaussian distributions

Image: A matrix of the second seco

Toy example Motif sampling Shape of proteins

Figure : EES for a mixture of Gaussian distributions, T=60

Toy example Motif sampling Shape of proteins

A B > A B > A

э

Toy example Motif sampling Shape of proteins

A B > A B > A

Toy example Motif sampling Shape of protein

Motif sampling

Amandine Schreck Adaptive Equi-Energy Sampler

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

注▶ 注

Toy example Motif sampling Shape of proteins

Motif sampling

Notations :

- L : length of the DNA sequence
- S : DNA sequence. $S = (s_1, s_2, \dots, s_L)$ with $s_i \in \{1, 2, 3, 4\}$ (1 corresponding to A, 2 to C, 3 to G and 4 to T)
- w : length of a motif
- A : array giving the position of the motifs. A = (a₁,..., a_L), where a_i is equal to j ∈ {0,..., w} if the ith element of the sequence is the jth element of a motif
- p_0 : probability for a sub-sequence of length w to be a motif

イロト イポト イヨト イヨト

Toy example Motif sampling Shape of proteins

Distribution :

• Background sequence : Markov chain associated with the transition matrix denoted by θ_0

• Motif : multinomial distribution of parameter $\theta = (\theta_1, \dots, \theta_w)$ This gives the distribution of A knowing S, θ , θ_0 and p_0 . We then put a prior on θ and p_0 , and study the distribution of A knowing S and θ_0 .

$$P(A|S,\theta_0) \propto \frac{\Gamma(N_1+a)\Gamma(N_0+b)}{\Gamma(N_1+N_0+a+b)} \prod_{i=1}^{\mathbf{w}} \frac{\prod_{j=1}^4 \Gamma(c_{i,j}+\beta_{i,j})}{\Gamma(\sum_{j=1}^4 c_{i,j}+\beta_{i,j})}$$
$$\prod_{k=2}^L (\delta_{a_{k-1}+1}(a_k))^{1a_{k-1}\in\{1,\ldots,w-1\}} \prod_{k=2}^L \theta_0^{1-\bar{A}_k}(s_{k-1},s_k)\xi_{a_1}(s_1)$$

Image: A math a math

Toy example Motif sampling Shape of proteins

Figure : Average location of the motifs - comparison of 3 algorithms

< ロ > < 同 > < 回 > < 回 > < 回 > <

Toy example Motif sampling Shape of proteins

Shape of proteins

Amandine Schreck Adaptive Equi-Energy Sampler

æ

э

Toy example Motif sampling Shape of proteins

A protein of size M is described by

- A monomer sequence S = [S₁, S₂,..., S_M] ∈ {0,1}^M, with S_i = 0 (resp. S_i = 1) if the *i*-th monomer is hydrophobic (resp. hydrophilic).
- A sequence of angles $X = [X_1, X_2, \dots, X_{M-2}]$.

Toy example Motif sampling Shape of proteins

• **Energy** of a protein :

$$U(X) = \sum_{i=1}^{M-2} \frac{1}{4} (1 - \cos(X_i)) + 4 \sum_{i=1}^{M-2} \sum_{j=i+2}^{M} \left[d_{i,j}^{-12} - C(S_i, S_j) d_{i,j}^{-6} \right]$$

where $C(0, 0) = 1$, $C(0, 1) = C(1, 0) = -1/2$ and $C(1, 1) = 1/2$.

• Goal : sample the distribution with density $\pi(x) \propto \exp(-U(x)/\tau)$, with $\tau > 0$ small (multimodalty).

• □ ▶ • • □ ▶ • • □ ▶

A 3 b

Toy example Motif sampling Shape of proteins

Toy example Motif sampling Shape of proteins

Figure : log of energy on a segment

э

Toy example Motif sampling Shape of proteins

	AEES	WL
Mean minimum energy	-3.1970	-3.1632
Associated standard deviation	0.032	0.048
Global minimum energy	-3.2925	-3.2764

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Conclusion

Amandine Schreck Adaptive Equi-Energy Sampler

A.

In practice :

- Far more efficient than Metropolis-Hastings (mix better)
- Does not require the user to choose the energy rings

But :

- Higher computational cost than the non-adaptive algorithm
- Still a lot of parameters to choose

To go further :

- Study the effects of the design parameters
- Combine with adaptive proposal
- Central limit theorem ?

Thank you!

URL of the paper : http ://arxiv.org/abs/1207.0662

< 一型

æ

- Selection function : $g_{\theta}(x, y) = \sum_{l=1}^{S} h_{\theta,l}(x) h_{\theta,l}(y)$, • with : $h_{\theta,l}(x) = \left(1 - \frac{d(\pi(x), A_{\theta,l})}{r}\right)_{\perp}$.
- Kernel for the EE move : $\mathcal{K}_{\theta}(x, A) = \int_{\mathcal{A}} \alpha_{\theta}(x, y) \frac{g_{\theta}(x, y)\theta(dy)}{\int g_{\theta}(x, z)\theta(dz)} + \mathbf{1}_{\mathcal{A}}(x) \int \{1 \alpha_{\theta}(x, y)\} \frac{g_{\theta}(x, y)\theta(dy)}{\int g_{\theta}(x, z)\theta(dz)},$
- with : $\alpha_{\theta}(x, y) = 1 \wedge \left(\frac{\pi(y)}{\pi(x)} \frac{\pi^{1-\beta}(x) \int g_{\theta}(x, z)\theta(dz)}{\pi^{1-\beta}(y) \int g_{\theta}(y, z)\theta(dz)}\right).$
- Kernel for the AEE sampler : $P_{\theta}(x,.) = (1 - \epsilon)P(x,.) + \epsilon K_{\theta}(x,.).$