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Introduction

The problem

Outline

Goal : brain imaging - locate activated zones in a brain

Collaboration with Alexandre Gramfort on brain imaging problems.
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Introduction

The problem

Outline

@ Goal: find the active (i.e. non-zero) components of the sparse
signal decomposition.

@ Difficulty: high dimensional setting, potentially low number
of observations, high number of regressors.

@ Existing solutions: deterministic methods (e.g. ISTA),
transdimensional MCMC methods (Reversible Jump,
Metropolised Carlin and Chib).
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Introduction

The problem

Outline

@ Specification of the problem
@ The simplified model
@ The Bayesian model selection framework

© The PMALA algorithm
@ Two main ingredients
@ The algorithm

© !llustration
@ Toy examples and simulated data

@ Futur directions
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Specification of the problem

The simplified model

The Bayesian model selection framework

Simplified model :
Y = GX + V7E,

where
o Y € RVXT is the observed signal
o G € RV*P is the design matrix (known)
@ X € RP*T is the emitted signal, directly assumed to be sparse

@ E € RN*T is a standard Gaussian noise

For concision of notations: 7 = 1.
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Specification of the problem

The simplified model

The Bayesian model selection framework

X can be equivalently defined by (m, X;,) where

e m=(my,---,mp) € M ={0,1}F is the model, with m; = 0
iff X; =0,

® X, € RI™ collects the active rows of X, where |m| = 3", m;.

— Sampling set:

o= ({m}xR\m\) .

meM

Amandine Schreck A Bayesian Method for Sparse Regression



Specification of the problem

The simplified model

The Bayesian model selection framework

Likelihood and prior distributions:
o m(Y|m, Xm) = (2n7) N2 exp (—1[|Y — G.Xm|3).
@ (Xm|m) = exp(—A|| Xmll1 — |[m|log(cy)), where A > 0.
o m(m) = W, where Y\ wWn = 1.

Posterior distribution on © = J,,c \( ({m} X ]R""‘):

_ 1
(. Xl V) 5 i ™ 59 (= 1Y = G Xl = Al )
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Specification of the problem

The simplified model

The Bayesian model selection framework

Goal : propose a transdimensional MCMC method to sample the
posterior distribution.

@ Robust in high dimensional settings
@ Can deal with non-differentiability in the penalization function

@ In harmony with sparsity assumption
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The PMALA algorithm Two main ingredients

The algorithm

Goal of the Proximal MALA algorithm (PMALA): build a Markov
chain converging to a target distribution with density of the form

m(x) o< exp(—g(x) — h(x)) ,

where

@ g: continuously differentiable, convex, such that Vg is
Lg-Lipschitz,

@ h: convex.

— Applied with g(x) = £||Y — Gx||2 and h(x) = A||x||1.

T
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Two main ingredients
The algorithm

The PMALA algorithm

Ingredient 1: The proximal gradient algorithm (also known as
the Iterative Shrinkage Thresholding Algorithm)

Goal: minimize g + h where

@ g: continuously differentiable, convex, such that Vg is
Lg-Lipschitz,

@ h: convex
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Two main ingredients

The PMALA algorithm

An iteration of the proximal gradient algorithm starting from x*:
(1) Define a local approximation of g + h at x* by

Qux, x) = h) + 8(x) + {x — x, Vg(x)) + 5 lx — x'IB

(2) Set xi*1 = argmin, @y (x', x) = proxs, (x! — 1Vg(x")),
where

_ 1
prosc(u) = argmin, (vh(x) + 21— ul3)
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Two main ingredients
The algorithm

The PMALA algorithm

Ingredient 2: The Metropolis Adjusted Langevin Algorithm
(MALA)

Goal: build a Markov chain converging to a target distribution with
density 7m(x) o< exp(—g(x)), where g is differentiable.
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The PMALA algorithm Two main ingredients

The algorithm

An iteration of MALA starting from X!:
(1) Propose a new point

2
Y= Xt - S Vg(X) + oWt

where W'+ is a random vector with i.i.d. entries from
N(0,1).
(2) Classical Acceptation/Rejection step.
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The PMALA algorithm Two main ingredients

The algorithm

An iteration of PMALA starting from X!:

(1) Propose a new point
o2
Yt+1 = l)I‘OXO.Zh/z <Xt — 7Vg(Xt) + O'Wt+1> s

where W1 is a random vector with i.i.d. entries from

N(0,1).
(2) Classical Acceptation/Rejection step, with acceptance
probability a(x,y) = %, where g(x,y) is the density of

the proposal distribution (explicitly known).
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Two main ingredients
The algorithm

t ft n
The PMALA algorithm

Lemma

Let p € RP and v,0 > 0. Set Y = proz, ., (u + o W) where
W € RP is a matrix of i.i.d random variables ~ N'(0,1). The
distribution of Y € RF is given by

S T pr(wd) do(dzi) | | TT Al ziddzi |
meM \ié¢im i€lm
where for any c,z € R,

pi(c) =P{lc+& <~} , with & ~ N(0,07) ,

fi(c,z) = (27102)_1/2 exp (—i <1 + ﬁ) z—c
z

202

)

o
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Two main ingredients
The algorithm

The PMALA algorithm

An iteration of PMALA starting from x is equivalent to:
(i) sample m" = (m},--- ,mp) with (m},i € {1,---,P}) i.i.d.
and such that m/ is a Bernoulli r.v. with success parameter

1 —P(( (x— %2Vg(x)>i+§‘2 Sv) ¢ ~ N(0,02) .

(i) sample y = (yi)1<i<p in RI™! with independant components
such that for any i € Iy, the distribution of y; is proportional

to
1 0% o? 2
RNLIN | IR0 VA (v .
ex"( s | (1 ) (5 Fs00), )
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Toy examples and simulated data

lllustration

The data: Y = GX + /7E
@ The components of E are samples of A/(0,1)
o X = (Xj)i<i<p with X; = 1;<s with S depending on the
example.

@ Columns of G € RV*P:
@ uncorrelated designs: independant Gaussian samples.
@ correlated designs: independant Gaussian samples or linear
combinations of other columns plus Gaussian vectors.

Implementation parameters:
@ Prior on the models: uniform.

@ Starting point: empty model.
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Toy examples and simulated data

lllustration

Actual probability of being active
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Figure: Posterior probability of activation in 16 dimensions, with
uncorrelated design (i.e. P(x; # 0|M) for 1 < < 16); S=8, P=16,
N=100.
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Toy examples and simulated data

lllustration

Actual probability
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Figure: Posterior probability of the models in 16 dimensions, with
uncorrelated design (i.e. P(m|M) for 1 < m < 21 ; logarithmic scale);
S=8, P=16, N=100.



Toy examples and simulated data

lllustration

Acceptation rate Evolution of the activation probability

Figure: Dimension 16, uncorrelated design. Right: evolution of the
acceptance rate; Left: evolution of the probability of activation.
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Toy examples and simulated data

lllustration

Actual model
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Figure: Posterior probability of activation in 200 dimensions, with
uncorrelated design; S=10, P=200, N=100.
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Toy examples and simulated data

lllustration
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Figure: Comparison of posterior probabilities of the models in 16
dimensions, with correlated design; S=8, P=16, N=100.
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Toy examples and simulated data

lllustration
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Figure: Comparison of mean estimated regression vectors in 300
dimensions, with correlated design; S=16, P=300, N=100.
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Toy examples and simulated data

lllustration
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Figure: Comparison of posterior probabilities of activation in 300
dimensions, with correlated design; S=16, P=300, N=100.
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Futur directions

Futur directions
@ partial updating (higher control on the acceptance rate)
@ tempering (to deal with multimodality)

@ hard thresholding or other thresholding functions (to avoid
shrinkage for regression applications)

@ theory : geometric ergodicity, ...

@ real data (back to brain imaging, regression problems)
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Futur directions

Thank you !
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