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The problem

Outline

Goal : brain imaging - loate ativated zones in a brain

Collaboration with Alexandre Gramfort on brain imaging problems.
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The problem

Outline

Goal: �nd the ative (i.e. non-zero) omponents of the sparse

signal deomposition.

Di�ulty: high dimensional setting, potentially low number

of observations, high number of regressors.

Existing solutions: deterministi methods (e.g. ISTA),

transdimensional MCMC methods (Reversible Jump,

Metropolised Carlin and Chib).
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The simpli�ed model

The Bayesian model seletion framework

Simpli�ed model :

Y = GX +
√
τE ,

where

Y ∈ R
N×T

is the observed signal

G ∈ R
N×P

is the design matrix (known)

X ∈ R
P×T

is the emitted signal, diretly assumed to be sparse

E ∈ R
N×T

is a standard Gaussian noise

For onision of notations: T = 1.
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The simpli�ed model

The Bayesian model seletion framework

X an be equivalently de�ned by (m,X
m

) where

m = (m
1

, · · · ,m
P

) ∈ M = {0, 1}P is the model, with m

i

= 0

i� X

i

= 0,

X

m

∈ R
|m|

ollets the ative rows of X , where |m| =∑
i

m

i

.

→ Sampling set:

Θ =
⋃

m∈M

(

{m} × R
|m|
)

.
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The simpli�ed model

The Bayesian model seletion framework

Likelihood and prior distributions:

π(Y |m,X
m

) = (2πτ)−N/2
exp

(

− 1

τ ‖Y − G·mXm

‖2
2

)

.

π(X
m

|m) = exp(−λ‖X
m

‖
1

− |m| log(λ)), where λ ≥ 0.

π(m) = w

m

, where

∑

m∈M w

m

= 1.

Posterior distribution on Θ =
⋃

m∈M

(

{m} × R
|m|
)

:

π(m,X
m

|Y ) ∝ w

m



−|m|
λ exp

(

− 1

2τ
‖Y − G·mXm

‖2
2

− λ‖X
m

‖
1

)

.
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The simpli�ed model

The Bayesian model seletion framework

Goal : propose a transdimensional MCMC method to sample the

posterior distribution.

Robust in high dimensional settings

Can deal with non-di�erentiability in the penalization funtion

In harmony with sparsity assumption
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Two main ingredients

The algorithm

Goal of the Proximal MALA algorithm (PMALA): build a Markov

hain onverging to a target distribution with density of the form

π(x) ∝ exp(−g(x)− h(x)) ,

where

g : ontinuously di�erentiable, onvex, suh that ∇g is

L

g

-Lipshitz,

h: onvex.

→ Applied with g(x) = 1

2τ ‖Y − Gx‖2
2

and h(x) = λ‖x‖
1

.
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Two main ingredients

The algorithm

Ingredient 1: The proximal gradient algorithm (also known as

the Iterative Shrinkage Thresholding Algorithm)

Goal: minimize g + h where

g : ontinuously di�erentiable, onvex, suh that ∇g is

L

g

-Lipshitz,

h: onvex
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Two main ingredients

The algorithm

An iteration of the proximal gradient algorithm starting from x

t

:

(1) De�ne a loal approximation of g + h at x

t

by

Q

L

(x t , x) = h(x) + g(x t) +
〈

x − x

t ,∇g(x t )
〉

+
L

2

‖x − x

t‖2
2

.

(2) Set x

t+1 = argmin

x

Q

L

(x t , x) = prox

h/L

(

x

t − 1

L

∇g(x t )
)

,

where

proxγh(u) = argmin

x

(

γh(x) +
1

2

‖x − u‖2
2

)

.
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Two main ingredients

The algorithm

Ingredient 2: The Metropolis Adjusted Langevin Algorithm

(MALA)

Goal: build a Markov hain onverging to a target distribution with

density π(x) ∝ exp(−g(x)), where g is di�erentiable.
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Two main ingredients

The algorithm

An iteration of MALA starting from X

t

:

(1) Propose a new point

Y

t+1 = X

t − σ2

2

∇g(X t) + σW t+1 ,

where W

t+1

is a random vetor with i.i.d. entries from

N (0, 1).

(2) Classial Aeptation/Rejetion step.
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Two main ingredients

The algorithm

An iteration of PMALA starting from X

t

:

(1) Propose a new point

Y

t+1 = proxσ2h/2

(

X

t − σ2

2

∇g(X t) + σW t+1

)

,

where W

t+1

is a random vetor with i.i.d. entries from

N (0, 1).

(2) Classial Aeptation/Rejetion step, with aeptane

probability α(x , y) = π(y)q(y ,x)
π(x)q(x ,y) , where q(x , y) is the density of

the proposal distribution (expliitly known).
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Two main ingredients

The algorithm

Lemma

Let µ ∈ R
P

and γ, σ > 0. Set Y = proxγ‖·‖
1

(µ+ σW ) where

W ∈ R
P

is a matrix of i.i.d random variables ∼ N (0, 1). The
distribution of Y ∈ R

P

is given by

∑

m∈M





∏

i /∈I
m

p

1

(µ
i

) δ
0

(dz
i

)









∏

i∈I
m

f

1

(µ
i

, z
i

)dz
i



 ,

where for any  , z ∈ R,

p

1

() = P {| + ξ| ≤ γ} , with ξ ∼ N (0, σ2) ,

f

1

( , z) =
(

2πσ2

)−1/2
exp

(

− 1

2σ2

∣

∣

∣

∣

(

1+
γ

|z |

)

z − 

∣

∣

∣

∣

2

2

)

.
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Two main ingredients

The algorithm

An iteration of PMALA starting from x is equivalent to:

(i) sample m

′ = (m′
1

, · · · ,m′
P

) with (m′
i

, i ∈ {1, · · · ,P}) i.i.d.
and suh that m

′
i

is a Bernoulli r.v. with suess parameter

1− P

(

∣

∣

∣

(

x − σ2

2

∇g(x)

)

i

+ ξ
∣

∣

∣

2

≤ γ

)

ξ ∼ N (0, σ2) .

(ii) sample y = (y
i

)
1≤i≤P

in R
|m′|

with independant omponents

suh that for any i ∈ I

m

′
, the distribution of y

i

is proportional

to

exp

(

− 1

2σ2

∣

∣

∣

∣

(

1+
γ

|y
i

|

)

y

i

−
(

x − σ2

2

∇g(x)

)

i

∣

∣

∣

∣

2

)

.
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Toy examples and simulated data

The data: Y = GX +
√
τE

The omponents of E are samples of N (0, 1)

X = (X
i

)
1≤i≤P

with X

i

= 1

i≤S

with S depending on the

example.

Columns of G ∈ R
N×P

:

unorrelated designs: independant Gaussian samples.

orrelated designs: independant Gaussian samples or linear

ombinations of other olumns plus Gaussian vetors.

Implementation parameters:

Prior on the models: uniform.

Starting point: empty model.
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Toy examples and simulated data
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Probability of being active estimated by PMALA

Figure: Posterior probability of ativation in 16 dimensions, with

unorrelated design (i.e. P(x
i

6= 0|M) for 1 ≤ i ≤ 16); S=8, P=16,

N=100.

Amandine Shrek A Bayesian Method for Sparse Regression



Introdution

Spei�ation of the problem

The PMALA algorithm

Illustration

Futur diretions

Toy examples and simulated data
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Actual probability

0 2 4 6 8 10 12 14 16
0
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Probability estimated by PMALA

Figure: Posterior probability of the models in 16 dimensions, with

unorrelated design (i.e. P(m|M) for 1 ≤ m ≤ 2

16

; logarithmi sale);

S=8, P=16, N=100.
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Toy examples and simulated data
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Evolution of the activation probability

Figure: Dimension 16, unorrelated design. Right: evolution of the

aeptane rate; Left: evolution of the probability of ativation.
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Toy examples and simulated data
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Figure: Posterior probability of ativation in 200 dimensions, with

unorrelated design; S=10, P=200, N=100.
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Toy examples and simulated data
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Probability estimated by RJMCMC

Figure: Comparison of posterior probabilities of the models in 16

dimensions, with orrelated design; S=8, P=16, N=100.
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Toy examples and simulated data
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Figure: Comparison of mean estimated regression vetors in 300

dimensions, with orrelated design; S=16, P=300, N=100.
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Toy examples and simulated data
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Figure: Comparison of posterior probabilities of ativation in 300

dimensions, with orrelated design; S=16, P=300, N=100.
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Futur diretions

partial updating (higher ontrol on the aeptane rate)

tempering (to deal with multimodality)

hard thresholding or other thresholding funtions (to avoid

shrinkage for regression appliations)

theory : geometri ergodiity, ...

real data (bak to brain imaging, regression problems)
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Thank you !
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